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One of the difficulties in mine countermeasures operations is 
the detection and classification of buried mines. Bottom 
mines are easily buried by scour from wave action or tidal 
currents, wave induced liquefaction, migrating sand dunes, or 
changes in seafloor morphology. These subsequent burial 
processes are dependant on sediment type, meteorological 
conditions and history, wave action, bottom currents, and 
mine properties (density, size, shape) [5]. Once buried, sonar 
detection   is   difficult,   especially   at   the   long   stand   off  
 

ips.  Prediction of mine 
tical decision aids that 

determine sonar effectiveness, rates of clearance, or whether 
he U. S. Navy is thus 
 the burial process to 
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y diver availability. 
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 burial is most active. 
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uch later Omni 
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ines that use optical 
e. The OTI/NRL mine 

mine design by adding 
heading, roll, and pitch 

are critical to the study of mine burial. Optical 
techniques have several drawbacks, however, such as sensor 
fouling from marine growth and the hydrodynamic effects on 
flow of the protuberances on the mine surface possibly 
enhancing mine burial. Neither of the early instrumented 
mine types has sensors to measure near-field processes 
responsible for burial but, notwithstanding, research using 
these mines has provided significant understanding of mine 
burial processes [5], [6].  
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Abstract – Detection of buried mines using co
sonars is difficult, especially in comple
environments, which complicates naval tactica
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The U. S. Navy is therefore supporting 
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burial prediction models. This research
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burial and the near-field processes responsible
Modes of burial are generally separated into
categories: impact burial and subsequent bu
and fill, creep, liquefaction, and bedform mo
Omni Technologies, Inc. (OTI) and the Nava
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that measure both subsequent mine burial be
the processes that initiate and effect burial. In
we describe new instrumented mines
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Early work on subsequent mine buri
mine shapes which required diver 
subjective, expensive, and limited b
Especially problematic was the limit
logistics during storm events, when
FWG (Forschungsanstalt der Bundes
und Geophysik in Kiel, Germany) and m
Technologies Inc. (OTI) and the Na
(NRL) developed self-recording m
methods to record the mine burial stat
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sensors that record changes in mine 
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the water column are also described.  
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Mining has proven to be an effective and econom
of both offensive and defensive warfare [1]-[3]. 
been used in nearly every conflict since the Re
War and remain a probable weapon for any futu
Mines are simple to build and deploy with very l
require sophisticated equipment to locate and significa
and risk to counter. “In short, there is superior  of 

 
 

Figure 1 - Instrumented Mine Assembly Drawing 
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OTI and NRL have developed new subsequ
instrumented mines that far exceed the cap
previous systems (Fig. 1). These instrumented
based on cylindrical mine housings constructe
Aluminum Bronze. The improved instrumented
acoustic burial sensors that are mounted flush w
surface and provide increased coverage (112 vers
sensors). As with the early NRL/OTI optical i
mine, roll, pitch, and heading are mea
accelerometers and electronic compasses. Acceler
axis) are used to detect mine motion that occu
mine falls into scour pits or the seafloor liquefies. 
sensors have been added to measure bottom
fluctuations associated with tidal changes and surface gra
waves. Added hydrophones can be used to support
hunting exercises and can also be used as an aco
which responds when interrogated with a c
Coherent acoustic Doppler sensors have been devel
measure hydrodynamic flow rates around 
Calculated flow rates (mean and inst

ent burial 
abilities of 

A mechanical design goal for the outer hou
eliminate protrusions, which might create add
flow around the mine and alter the location and ra
The sensors, however, require access to t
environment thus requiring each sensor to be rec

housing fails. All external electrical 
on the front end cap
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ines, which 
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outer cylinder or end caps. The mine has 135 penetrations for 
sensors and connectors. In order to minimize the risk of leaks, 
every penetration has a minimum of 2 different watertight 
seals. 
 
An inner frame is used to support the electronics and battery 
packs (Fig. 3). A roller system allows the 130 kg frame to be 
easily and safely inserted and extracted for servicing. The 
battery packs are located on each end of the frame to balance 
the load. At the center of the inner frame is a second pressure 
housing protecting the majority of the mine’s electronics and 
storage media in case the watertight integrity of the outer 

connectors are recessed 
 and covered with a bronze plate 

maintaining the mine’s smooth outer surface. 
 

th

rom acoustic backscatter of the burial sensors can b
estimate rates of sedimen

and power is available for a one-year deployment
 
 

II. IMPROVED SUBSEQUENT 
INSTRUMENTED MINE 
 
A. Mechanical Overview: The instrumented m
are designed to study subsequent burial, are c
shaped (2.0
approximately 800 kg fully loaded, and have 
density of 1760 kg m-3 (Fig. 2). The housing is 2.
on both ends and tapers to a 2.04 cm thickness a
This material was removed to reduce the density o
A naval marine bronze was selected for the hou
of its high-density, non-magnetic, anti-fouling, a
resistant properties. This material is strong an
eas

an average 
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d corrosion 
d hard but 
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                Figure 3 - Instrumented Mine Inte

 
B. Electronics Overview: The mine
for flexibility and simplicity. Two rela
electronics canister act as wiring centers

rnal Assembly 

 electronics is designed 
y boards external to the 

 for all the sensors, 
thus reducing the number of wires attached directly to the 
acquisition system. The acquisition system electronics is used 
to select the active sensor, acquire data, and store that data to 
disk. The acquisition electronics is designed around a custom 
back plane consisting of 5 generic subsystem interface groups 
and 1 control system interface group. Each subsystem group 
consists of 3 slots that can be occupied by any subsystem 
type. The back plane provides power, a separate storage 
subsystem interface for each subsystem, a serial interface to 
the storage subsystem and inter-subsystem connectivity. 
Unique subsystem interface requirements such as sensor 
selection and analog inputs and outputs are provided on the 

 
                  Figure 2 - Instrumented Mine during Assembly 
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C. Burial Sensors: The burial sensors are un
more functional than the name implies. These tra
designed to determine the burial state at each 
transducer locations, allowing percent burial to b
Analysis of acoustic returns also allows charact
changing geometric dimensions of the surroundin
detection of bedload transport, and estimation of
sediment size and concentration. Burial transdu
might also be p
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 suspended 
cer signals 
ppler flow 

sampling interval can be acquired by t
 
Determination of which sensors 
sediment-water interface is perform
The large differences in the impe
sediment or water covers a transd

techniques to provide high-resolution flow m
over the entire mine surface, though this fun
currently implemented.  
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Figure 4 - Burial Transducer Cross-Sectional View and Beam Pattern 

 
Basic burial transducer measurement techniques consist of 
emitting a 20 µs wide or less pulse (either at 1.5 MHz or 3.0 
MHz) and sampling for 1.33 ms (~1 m range). The transmit 
duration is less than the 34 µs needed for an acoustic 
reflection from the transducer face given the ~1500 m s-1 

ed signal is split into I 
ered and each channel’s 
tal signal bandwidth of 
z or 3.0 MHz carrier 
izes the data storage 

cessing flexibility. Up to 
100 measurements (user selectable) for each burial sensor per 

he instrumented mine.  

are buried below the 
ed in post-processing. 
dance mismatch when 
ucer face leads to a 

significant acoustic reflection difference (at a range of 2.5 
cm) for buried or unburied conditions. Post processing will 
allow the user to correct miss identified sensor burial 
conditions  which   result   primarily  from   large   suspended  
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cur during storm events. 
ich improves the signal-
performance. Threshold 

 be selected 
r observations of burial 
from laboratory tests. 
(using all 112 burial 
es. 

e scour pit surrounding 
e acoustic returns used 

for burial detection. The 2-way time required for a signal to 
reflect from the sediment-water interface together with the 
water sound speed are used to calculate the distance from 
each transducer face to the sediment. Threshold detection of 
the sediment water interface is much more complex than 
burial detection due to a number of conditions that will 
produce false range detections such as high sediment 
concentrations during storms, the presence of pelagic fauna, 
and the detection of multiples in buried transducers. A means 
to compare the calculated ranges to the mine orientation will 
also be required to provide a consistent coordinate system 
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measurements. A software program is planne

r scour pit 
o visualize 
entation. 

 and size 
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3 dimensional flow description relative to the 
mine. Three ADCP sensors are placed at 120° intervals 
around the circumference of the mine near each en
total of six ADCP’s. The sampling interval of the m
selectable and the I, Q sampling method is iden
used for the burial transducers. 
 
 

 
In addition, suspended sediment concentratio
distribution are measured from water column
strengths using the burial transducers. This techni
multi-frequency signals and thus the need for bo

thorough description of these techniques and the
transducer calibration [7].  
 
The initiation of bedload transport can also b
using correlation techniques 

begins, a change in phase of the returned w
expected as a result of changing fine scale seafloo
(i.e., the grains begin to move). 
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based on coherent acoustic Doppler techniques,
measure flow around the mine. Instantaneous
calculated for each ping and mean flows are calcu
selected interval of instantaneous flow measure
first flow sensor, an acoustic Doppler curr
(ADCP), operates at 1.5 MHz with 3 element
placed in a 2.9 cm diameter circle, 120° apart (
elements are tilted inward at 30°angles and are re
the face of the transducer by 2 cm. The beam cen
element cross approximately 2.5 cm above the
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d to 
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Figure 7 - Doppler Transducer Cr
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E. Orientation Sensors: Orientat
critical to the analysis of subsequent
Motion before, during and after even
the burial process. Burial, hydrophon
require orientation information to
measurements for transformations to
system. 
 

 
 
 
Figure 6 - ADCP Transducer Piezo Ceramic Element Configuration 

e element 500 kHz 
d as the Doppler flow 

e, 1 on each end cap and 
nder, 90° apart (Fig. 7). 
dentical to that of each 

ingle element units with 
beams directed radially outward from the center of the mine, 
only flow normal to the transducer center axis is calculated.  
 

 

oss-Sectional View 

The flow measurements are obviously important for 
ent flow induced by the 

ating sediment flux in 
ined with the suspended 
es a direct measure of 

ine’s vicinity during 
storm events or during tidal cycles.  

ion measurements are 
 mine burial processes. 
ts provides insight into 
e and flow sensors also 
 compare successive 
 a common coordinate 

The instrumented mine orientation sensor consists of a 
-axes flux gate compass 
l and pitch. Heading 
.0° and roll and pitch 

accuracy is approximately +/- 0.5°. The selection of a non-
magnetic housing allows use of a magnetic heading sensor as 
opposed to a fiber optic compass. A fiber optic compass 
would certainly be beneficial should the size and power 
efficiency issues of currently available units be resolved. 
Sampling intervals are selectable but should be at least as fast 
as the fastest sampling interval of the other sensors. 
 
F. Pressure Sensors: Six pressure sensors monitor changes 
in mean water depth (primarily tidal) and surface gravity 
wave direction, height, and period. These transducers have a 

standard, commercial off-the-shelf 3
and 3-axes accelerometer for rol
accuracy is on the order of +/- 2
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range of 0 to 100 psi, giving a maximum wat
~45m with a sensitivity of approximately 1 m
Knowledge of surface wave conditions is requi
most scour and liquefaction mine burial mod
stainless steel filters insure sediment, shells, rocks
damage the sensitive pressure sensor diaphragm
sensor measurements are programmed to oc
selectable inter

e
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c
vals and durations (e.g., for 15 mi

hour). The sample rate is 10 samples per secon
pressure transducer. 

r depth of 
m (Fig. 8). 
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s. Pressure 
ur at user 
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H. Accelerometers: A +/- 4 G-rated,
used to constantly monitor acce
associated with mine movement such
into scour pits and sinking durin
detected. These sensors are located n
of the mine and mine movement asso
greater than 0.1 G will trigger a sto
pre and post trigger accelerations are 
continuously moni
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packs are constructed from alkalin
welded together with tin strips. D-ce
on a beneficial cost to energy density
safety and ease of disposal. 
 

Figure 8 - Pressure Sensor Cross-Sectional Vie

 
G. Hydrophones: Hydrophones are used 
acoustic energy impinging on the mine’s surface 
and classification sonars (Fig. 9). Combined
instrumented mine’s burial a
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e ine mine 
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The hydrophones are capable of receiving acoustic energy 
from 10 kHz to 100 kHz. The sampling method, however, 
band limits the signal to a user selected 10 kHz band located 
within the transducer’s range. The hydrophones are 
monitored continuously for energy 20 dB (or other selected 
power level) above background noise. This triggers a storage 
event in which both pre and post trigger data (16-bit I and Q 
samples) is stored for all six hydrophones. 

o
rom search 
 with the 
asurements, 
 of military 
 have the 

order that only the necessary electro
for each scheduled sensor data 
multiple processor configuration als
mission planning algorithms that prov
modes as well as adaptiv

this information is useful for post mission analysi
training exercises. The hydrophones will als
capability of responding to a coded pulse to det
health and location as well as for responding to se
during training exercises. It is envisioned th
modems could be used on each mine to c
intelligent minefield for fleet exe

rm

 
Figure 9 - Hydrophone Cross-Sectional View and Beam Pattern 

 3-axis accelerometer is 
leration. Accelerations 
 as rocking and falling 

g liquefaction can be 
ear the geometric center 
ciated with accelerations 
rage sequence whereby 
sampled and stored. The 

tored accelerometer provides immediate 
detection of motion that would normally be missed by 

Each accelerometer axis 
.   

 to eight 72 alkaline D-
 kg, provide power for 

ven multiples to provide 
ine’s weight (Fig. 10). 

o 365 days of energy 
nario. The battery pack 

gins at 12.8V (eight D-cells in series) and the mine 
stops functioning when the voltage falls below 6.5V. Battery 

e D-cells that are spot 
lls were selected based 

 ratio, ready availability, 

Seven processors are used to distribute the processing load in 
nic systems draw power 
acquisition cycle. The 
o enables more capable 
ide both fixed sampling 

e sampling modes that can detect 
specific events and trigger faster sampling intervals. 
 
Four 20 Gigabyte hard drives provide non-volatile storage. 
These drives are interfaced to a single board computer 
running Linux. This system is generally off and only powered 
on when the cache subsystem memory is nearly full. Each 
power up sequence uses the next disk drive in the rotation 
sequence providing redundancy in case of failure. 
 

periodic orientation measurements. 
is sampled at 2929 samples per second
 
I. Power and Storage Systems: Up
cell battery packs, each weighing 16.5
the mine. Battery packs are used in e
redundant power and balance the m
The eight battery packs can provide up t
depending upon the deployment sce
voltage be

 
Figure 10 - Battery Pack Core 
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